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The thermal Casimir-like force in free-standing liquid crystal films close to the smectic-A–nematic transition
temperature is computed using a quadratic functional approach. In the framework of a microscopic mean-field
model of free-standing smectic-A films, the temperature dependence of the order parameter profiles is com-
puted and later used to estimate the elastic coupling variability in the vicinity of first- and second-order bulk
smectic-A–nematic phase transitions. The strong nonuniformity of the coupling constant profiles promotes a
significant increase of the fluctuation-induced force over three orders of magnitude, especially in thin films.
This result reinforces the possible predominance of the thermal Casimir force as compared to the standard van
der Waals interaction in thin smectic-A liquid crystal films.
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I. INTRODUCTION

A unique property of smectic liquid crystals is the ability
to form free-standing smectic films �FSSF’s� which can be
considered as a stack of smectic layers confined by a sur-
rounding gas �1,2�. The combination of surface-induced or-
dering and finite-size effects in FSSF’s gives rise to a series
of phenomena that are not observed in bulk liquid crystal
�LC� samples. These phenomena are the existence of smectic
films at high temperatures as compared with bulk samples
�3,4�, surface-enhanced ordering, and layer-thinning transi-
tions �5–7�. Due to their unusual properties, FSSF’s are ob-
jects of intensive experimental and theoretical investigations.

Thermal fluctuations in FSSF’s with slowly decaying
�power-law� correlations produce a fluctuation-induced long-
range interaction between the film surfaces �8–14�. Usually,
this thermal Casimir-like force has a longer range than the
van der Waals interaction and can be expected to play a
relevant role in governing the behavior of FSSF’s. In particu-
lar, the Casimir-like smectic force is predicted to be predomi-
nant over the van der Waals interaction in phenomena in
which the smectic fluctuation profile is nonuniform, such as
wetting and layer-thinning transitions �15–18�. On the other
hand, in cases where the fluctuation profile is uniform, like
layer-by-layer freezing �19�, the Casimir-like force has a
faster decay than the van der Waals interaction �12,20�.

In previous work �20,21�, the surface effects and field-
driven crossover in the Casimir-like force were examined in
FSSF’s of thickness �. In particular, it has been shown that,
due to ordering field terms, the typical 1 /� decay of the
fluctuation-induced surface-surface interaction energy is re-
placed by a faster 1 /�2 decay. The main results were derived
within the framework of Holyst’s model �22,23� for thermal
fluctuations in free-standing smectic-A films �FSSAF’s�. In
the Holyst model, the FSSAF elastic properties are assumed
to be spatially uniform and characterized by the bending
elastic constant K and the compressibility of the smectic lay-
ers B which are set similar for all film layers and equal to
those at the bulk smectic-A �SmA� phase. This assumption
is physically justified for FSSAF’s well below the bulk

smectic-A–isotropic �SmA-I� or smectic-A–nematic
�SmA-N� transition temperatures when the smectic order is
well developed in the whole volume of the film.

However, FSSAF’s can exist at temperatures significantly
higher than the bulk phase transition temperature. According
to a microscopic model �24,25�, which describes many fea-
tures of FSSAF’s at temperatures well above the bulk
SmA-I or SmA-N transitions, the internal film layers can be
less ordered than the outermost ones. Therefore, the orienta-
tional s and translational � order parameters for smectic lay-
ers situated far from the boundary surfaces of the film can be
smaller than those for the outermost film layers and this non-
uniformity of the film should be taken into account when the
Casimir-like force is computed. Of course, in such presmec-
tic films, the so-called structural forces are usually large
enough to mask the Casimir force �26,27�. However, the
nonuniformity of the order parameter profiles persists even
for temperatures slightly below the bulk transition tempera-
ture. In this situation, the structural forces are expected to be
very weak and the Casimir-like contribution to the surface-
surface effective interaction may become predominant.

It is well known that, in macroscopic bulk LC samples,
the elastic constants K and B are proportional to s2 and �2,
respectively �1,2�. Although the smectic film layers have a
microscopic thickness comparable to the molecular length l*,
their length and width are macroscopic. Hence, each film
layer can be considered as a macroscopic ensemble, consist-
ing of a very large number of molecules, over which one can
perform the same statistical-mechanical average of physical
values, such as order parameters s and �, and elastic cou-
plings K and B, as in the case of the macroscopic bulk LC
samples. As a result, we can assume that, for the smectic film
layers, the relation between the elastic couplings K and B
and order parameters s2 and �2, respectively, should be simi-
lar to analogous relations for macroscopic bulk LC samples.
Therefore, the values of the elastic couplings K and B for
interior film layers should be significantly smaller than those
near the boundary surfaces of the FSSAF.

Using a microscopic model �24,25�, one of us extended
the Holyst model for FSSAF’s by taking into account these
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nonuniform elastic constant profiles �28,29�. Close to bulk
SmA-I or SmA-N transition temperatures, this approach
showed that these profiles have a significant effect on ther-
mal fluctuations and such a feature points toward a strong
influence of the nonuniformity of the elastic couplings on the
fluctuation-induced Casimir-like interaction between the free
surfaces of smectic films.

The present paper is devoted to the investigation of the
influence of the elastic constant profile nonuniformities on
the Casimir-like force in free-standing smectic-A films
within a Gaussian functional integral approach. The profiles
of the elastic constants K and B are numerically computed
from the microscopic model of FSSAF’s �24,25�. We will
show that, close to the bulk first- and second-order SmA-N
phase transition temperatures, the amplitude of the Casimir-
like force has a strong dependence on the order parameter
profiles. In both cases, the amplitude of the Casimir-like
force grows for several orders of magnitude when the tem-
perature approaches the transition temperature, thus indicat-
ing that the thermal Casimir-like contribution due to the
smectic layer displacement fluctuations predominates over
the van der Waals force. Also, the nonuniformity of the K
and B profiles in the vicinity of the bulk transition tempera-
ture modifies the dependence of the Casimir-like force on the
film thickness �. Close to the second-order bulk SmA-N tran-
sition temperature, the force decays with the thickness l as
1/�3/2 in contrast to the 1/�2 decay far from the transition
point. This feature is due to the divergence of the typical
correlation length which also governs the vanishing of the
compressibility constant B.

II. MODEL

In the harmonic approximation, the fluctuation Hamil-
tonian for a thin free-standing smectic-A film with N layers
can be written as

H = �
a

L

d2r��
i=1

N
dKi

2
��ui�r��2 + �

i=1

N−1 �Bi + Bi+1

4d
	

��ui+1�r� − ui�r��2 +
�

2

�u1�r�
2 +

�

2

�uN�r�
2� , �1�

where ui�r� is the ith-layer displacement from its original
equilibrium position at z= id. Here, d is the average distance
between layers, L is the transversal size of the film, and a is
a short-wavelength in-layer cutoff of the order of the short
molecular axis. The above Hamiltonian therefore describes a
system composed of a finite number of coupled continuous
layers. All thermodynamic course-grained quantities are in-
dependent of the in-layer cutoff. Ki and Bi stand for the bend-
ing and compressibility elastic constants of the ith layer, re-
spectively, � is the surface tension which represents the
additional energy cost associated with variations on the area
of the free surfaces, with the equilibrium direction being de-
termined by the holder used in the free-standing film tech-
nique �30�. A characteristic surface tension �c=�KB delimits
the regimes of strong ����c� and weak surface tension ��

��c�. Here, K and B are the bulk elastic constants which are
temperature dependent �1,2�. Recent works have shown that
the surface tension also depends on the temperature and film
thickness �31–33�. However, its temperature dependence
near the first- and second-order SmA-N phase transitions is
less pronounced as compared with K and B, and variations of
the surface tension � can be neglected �34,35�. As said
above, this model was originally introduced by Holyst
�22,23� to investigate the x-ray diffraction for thin smectic-A
films and further extended by Mirantsev �28,29� to compute
thermal properties of films taking into account nonuniform
elastic constant profiles.

Taking the continuous Fourier transform with respect to r,
one can write the Hamiltonian �1� in the more compact form

H =
1

2
�

2�/L

2�/a d2q

�2��2�
i,j

ui�q�Mijuj�− q� , �2�

where the nonzero elements of the interaction matrix M are

M1,1 = K1dq4 + �q2 + �B1 + B2�/2d , �3�

Mi,i = Kidq4 + �Bi−1 + 2Bi + Bi+1�/2d, i = 2, . . . ,N − 1

�4�

MN,N = KNdq4 + �q2 + �BN−1 + BN�/2d , �5�

Mi,i+1 = Mi+1,i = − �Bi + Bi+1�/2d, i = 1, . . . ,N − 1. �6�

The quadratic form �2� of the Hamiltonian allows to per-
form the analytical computation of some thermodynamic
quantities. In particular, the total free energy per unit area of
the film is given by

f

kBT
=

1

2
�

2�/L

2�/a d2q

�2��2 ln�det M� . �7�

This total free energy has the following functional depen-
dence on the film thickness �:

f = fB + fS + �f��� , �8�

where fB and fS are the bulk and surface contributions to the
total free energy, respectively. The last term �f��� is the
effective surface-surface interaction energy due to the smec-
tic layer displacement fluctuations. In models which consider
the film continuous also in the direction perpendicular to the
layers, the volume and surface contributions to the free en-
ergy are formally divergent. In such case, a regularization
procedure is needed to separate them from the fluctuation-
induced contribution. The regularization schemes usually in-
troduce a perpendicular cutoff to make these contributions
finite with the remaining thermodynamic quantities being
cutoff independent. In the present model of a smectic film
with discrete layers, the volume and surface contributions are
finite. Hence no further regularization is needed once the
layer spacing already acts as a natural cutoff perpendicular to
the layers plane. We can split numerically the Casimir-like
contribution making use of the functional dependence of the
different terms on the film thickness. The volume contribu-
tion is obtained using an auxiliary thick film with uniform
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bulk couplings and periodic boundary conditions. The
Casimir-like force is obtained after subtracting the remaining
free energy of �-layer and ��+1�-layer films, respectively.

Earlier results have shown that the Casimir-like force is
strongly influenced by the shape of the smectic fluctuation
profile �20,21�. Here, we are interested in computing the
temperature dependence of the smectic thermal Casimir
force due to the variability of the elastic constants. Their
profiles can be obtained from the orientational si and trans-
lational �i order parameters of each film layer. These param-
eters can be computed, within a mean-field approach, from a
recently introduced extended McMillan model �24,25�. In
this model, the one-particle effective potential within a smec-
tic layer is given by

V1�z1,�1� = −
V0

3
�s1 + s2 + 3W0/V0

+ 	 cos�2�z1/d���1 + �2��P2�cos �1� , �9�

Vi�zi,�i� = −
V0

3 ��
i−1

i+1

si + 	 cos�2�zi/d���
i−1

i+1

�i	�P2�cos �i� ,

�10�

VN�zN,�N� = −
V0

3
�sN + sN−1 + 3W0/V0

+ 	 cos�2�zN/d���N + �N−1��P2�cos �N� .

�11�

Here, P2�cos �i� is the second-order Legendre polynomial
with �i being the angle in the ith layer between the long axis
of the molecule and the z direction. V0 is a parameter of the
microscopic model �36� that determines the scale of the
nematic-isotropic transition temperature. The parameter 	 is
related to the length of alkyl tails of calamitic molecules
through the well-known relation 	=2 exp�−�r0 / l*�2�, where
r0 is the characteristic length of the model intermolecular
interaction, and the molecular length l* is proportional to that
of the alkyl tails.

In the microscopic mean-field model for finite films
�24,25�, the strength of surface anchoring is determined by
the parameter W0. This parameter couples with orientational
order parameter s and represents the surface-induced homeo-
tropic alignment in the film. In FSSAF’s, the absence of a
substrate gives rise to an almost perfect homeotropic align-
ment at the film surfaces �37�. We will assume that, for the
ith layer, the bending elastic modulus Ki is proportional to si

2

and the compressibility modulus is proportional to �i
2

�28,29�. For thick films �N→ 
 � the local order parameters
should have values predicted by McMillan theory �36� for
the bulk SmA phase. At the temperature T0 well below the
bulk SmA-N transition temperature, we can assume the bulk
order parameters to be s0 and �0 and set the corresponding
elastic constants K�T0�=K0 and B�T0�=B0. Knowing values
of B0 and K0 at the reference temperature T0, we can obtain
the elastic constant profiles at temperature T using the fol-
lowing expressions:

Ki�T� = K0� si�T�
s0

	2

, �12�

Bi�T� = B0��i�T�
�0

	2

. �13�

The elastic constant profiles may have distinct behaviors
near the first- and second-order phase transitions depending
on the order parameter profiles. The order of the bulk phase
transition is determined by the parameter 	. McMillan theory
�36� predicts that for 	�0.7 the bulk SmA-N transition is
continuous, i.e., the smectic order parameter vanishes con-
tinuously as one approach the transition temperature. For
0.7�	�0.98 the SmA-N transition is a first-order one, with
the smectic order parameter changing abruptly from a finite
value to zero when crossing the transition temperature. For
values of 	 above 0.98, a first-order SmA-I phase transition
takes place. We will consider values of 	 that correspond to
SmA-N transitions. In particular, we will use 	=0.85 �for
which the bulk SmA-N first-order transition temperature
is TAN=0.206 988V0 /kB�, and 	=0.6 �for which the
bulk second-order transition temperature is TAN
=0.177 261V0 /kB�. We performed our calculations using
W0=1.8V0 which corresponds to a strong homeotropic an-
choring at the free surfaces of the film. In what follows, we
use as reference temperatures T0=0.150V0 /kB for 	=0.6 and
T0=0.180V0 /kB for 	=0.85, which are well below the tran-
sition temperature in either case. At these temperatures, we
considered the elastic constants having typical values,
namely, B0=108 dyn/cm2 and K0=10−6 dyn.

III. RESULTS OF COMPUTATION

In Fig. 1, we show the bending elastic constant versus
layer index i of a 41-layer film at distinct temperatures. In
this case, 	=0.85, corresponding to a bulk first-order
SmA-N transition. At the reference temperature, which is
well below the bulk transition temperature, the bending con-
stant profile is uniform in the whole film except at the out-
ermost film layers. Close to the bulk transition temperature,

FIG. 1. Normalized bending elastic constant versus layer index
for a 41-layer FSSAF at distinct temperatures. The bulk transition
temperature is TAN=0.206 988V0 /kB. The parameters of the micro-
scopic model �24,25� are W0=1.8V0 and 	=0.85.
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the nonuniform feature of the profile is more pronounced,
but the bending constant profile of inner layers is still flat. In
Fig. 2, we show the compressibility elastic constant as a
function of the layer index for the same film at distinct tem-
peratures. Again, at the reference temperature the profile is
uniform except at the surface layers. Close to the phase tran-
sition, there is a pronounced reduction in the value of the
compressibility constant and the profile becomes nonuniform
over a longer distance to the film surface. For both compress-
ibility and bending constants, the surface effects are more
pronounced for thinner films for which the order parameter
profiles become strongly nonuniform near the transition tem-
perature.

For temperatures not very close to the SmA-N transition
temperature, the compressibility of the outermost film layers
is slightly smaller than that of other film layers. To under-
stand this feature, once should notice that, according to the
microscopic mean-field model �24,25�, an orienting action of
the boundary surfaces on the LC molecules of the film is
simulated by a short range orienting field, which acts directly
only on molecules within the first and last outermost film
layers. This field enhances the orientational order in these
layers and such enhancement is transmitted to the next film
layers. Since the nematic and smectic orders are connected to
each other, the smectic order is also enhanced in the layers
adjoined to the outermost ones. However, when the tempera-
ture of the film is significantly lower than the bulk smectic-A
to nematic transition temperature for which the smectic order
is well developed in the whole volume of the film, this en-
hancement is very small. In this case, the smectic order in the
outermost film layers can be even slightly lower than that in
the interior ones because molecules of the outermost layers
interact directly with molecules of only a single neighboring
layer whereas molecules of each interior film layer interact

with molecules of two neighboring layers. Therefore, the
compressibility of the subsurface smectic layers becomes
smaller than that of the interior film layers. On the contrary,
when the temperature of the film is very close to the bulk
smectic-A to nematic transition temperature and the smectic
order is weakened in the interior film layers, the orienting
action of the boundary surfaces of the film on the LC mol-
ecules of the outermost film layers gives rise to an enhance-
ment of the smectic order in the interfacial film layers as
compared to smectic order in the interior ones. Hence, the
compressibility of the subsurface smectic layers is higher
than that of the interior film layers.

Taking 	=0.6, corresponding to a second-order SmA-N
transition, we obtain bending and compressibility profiles ex-
hibiting distinct trends. In Fig. 3, we plot the bending elastic
constant as a function of the layer index both for the refer-
ence temperature and close to the bulk transition temperature
for a 41-layer film. The bending profiles exhibit a behavior
quite similar to that observed in the case of a first order
SmA-N transition with inner layers keeping a uniform pro-
file. On the other hand, the compressibility profiles have a
quite different behavior in this case. At the reference tem-
perature, the compressibility profile has a negative concavity
and is uniform for inner layers, as shown in Fig. 4. Close to
the transition temperature, the compressibility profile exhib-
its a positive concavity with a significant reduction of mag-
nitude. Such reduction reflects the vanishing of the transla-
tional order parameter in the case of the second-order phase
transition. Also, the compressibility profile is nonuniform in
the whole film.

The nonuniform feature of the elastic constant profiles
close to first- and second-order phase transitions can induce a
significant temperature dependence of the Casimir-like force.
This fluctuation-induced force per unit area for films with
uniform elastic constant profiles has an asymptotic functional
dependence given by

F

kBT
= −

��T�
�c

� 1

�
	2

, �14�

with �=Nd. In the continuous limit, it is straightforward to
show that the asymptotic amplitude ��T� can be written as
�8,20�

FIG. 2. Normalized compressibility elastic constant versus layer
index for a 41-layer film at distinct temperatures. The parameters
are the same as in Fig. 1.

FIG. 3. Normalized bending elastic constant versus layer index
for films at distinct temperatures. The bulk transition temperature is
TAN=0.177 261V0 /kB. The model parameters are W0=1.8V0 and 	
=0.6.

de OLIVEIRA, LYRA, AND MIRANTSEV PHYSICAL REVIEW E 73, 041703 �2006�

041703-4



��T� =
1

16�
�
n=1


 ��c − �

�c + �
	2n 1

n2 , �15�

where �c=�K /B is a characteristic length scale of the film.
From Eq. �14�, we can notice that an additional temperature
dependence of the smectic Casimir-like force can appear
from the temperature dependence of K and B in the expres-
sions of �c and �c, as well as from their nonuniformity
through the film. The above expression will be used to com-
pare the fluctuation-induced force computed in the present
work with that predicted by the continuous model of a uni-
form film. In this case, the temperature dependence of the
coupling constants will be assumed to be derived from the
mean-field model for bulk smectic LC.

In what follows, we analyze the behavior of the Casimir-
like force for films with nonuniform elastic constant profiles.
The results were numerically obtained from Eq. �8�. First, we
considered the case of a first-order SmA-N transition with
	=0.85, �=30 dyn/cm, d=30 Å, a=4 Å, and L=1 cm. In
Fig. 5, we plot the Casimir-like force as a function of tem-
perature for different film thicknesses. For thick films, this
effective long-range force exhibits only a small deviation
from the result of the continuous model, as one approaches
the bulk transition point. In contrast, the amplitude of this
force in thin films increases significantly, with its magnitude
being three orders of magnitude larger than that predicted
when assuming uniform elastic constant profiles. This sub-
stantial increase of the Casimir-like force is directly related
to the nonuniformity of the elastic constant profile in the
central part of the film.

In Fig. 6, we plot the Casimir-like force as a function of
temperature in the vicinity of the second-order SmA-N bulk
transition �	=0.6�. In this case, the fluctuation-induced force
is enhanced for both thick and thin films as the temperature
is tuned closer to the bulk transition temperature. This fea-
ture reflects the nonuniformity of the elastic constant B close
to the transition even for thick films. For thin films the am-
plitude displays a minimum which is a consequence of the
competitive roles played by the nonuniformity of the profile
and the vanishing of the elastic constant. For the second-
order SmA-N phase transition, the translational order param-
eters �i vanish continuously when the temperature ap-
proaches to the bulk transition temperature. Therefore, the
thermal Casimir force should decrease when the temperature
increases. Whenever the profile at the film center remains
flat, this is the predominant effect. As the profiles of the
order parameters become sufficiently nonuniform at the film
center, the amplitude tends to increase. Therefore, the com-
petition between the vanishing of the order parameters and
the development of a nonuniform profile results in a mini-
mum of the Casimir-like force. For thick films, the nonuni-
formity is always predominant. The amplitude of the

FIG. 4. Normalized compressibility elastic constant versus layer
index for films at distinct temperatures. The parameters are the
same as in Fig. 3. Notice that the compressibility elastic constant
profile changes its curvature from negative to positive close to the
transition temperature.

FIG. 5. �2�F /kBT� versus reduced temperature for films with
different thickness. The elastic constants were numerically obtained
from the extended mean-field model �24,25� with the same param-
eters as in Fig. 1. The surface tension is �=30 dyn/cm. The refer-
ence temperature was taken as T0=0.180V0 /kB. Circles stand for a
film with 11 layers and squares are for a film with 41 layers. Dia-
monds represent the values predicted by Eqs. �14� and �15�.

FIG. 6. �2�F /kBT� versus reduced temperature for films with
different thicknesses. The microscopic parameters are the same as
in Fig. 3. The reference temperature was taken as T0=0.150V0 /kB.
The circles represent data for a film with 11 layers and squares
represent data for a 41 layer film. Diamonds are values predicted by
Eqs. �14� and �15�.
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fluctuation-induced force also increases about three orders of
magnitude near the transition temperature. These results
show that the Casimir-like force can predominate over the
van der Waals force in the vicinity of the SmA-N transition
temperature.

As shown above, the long-range interaction induced by
smectic fluctuations presents distinct behaviors for thin and
thick films close to the SmA-N phase transition. This feature
indicates that the order parameter profiles influence the
thickness functional dependence of this force. In Fig. 7, we
show the Casimir-like force as a function of the film thick-
ness at different temperatures for 	=0.85. In all cases, we
can notice that there is a crossover between distinct decays of
the thermal Casimir-like force. The deviation from the pre-
dicted by Eq. �14� becomes more pronounced as the tem-
perature approaches the SmA-N transition point. In fact, for
temperatures very close to the transition temperature the or-
der parameter profiles are nonuniform even for thick films.
Considering 	=0.6 and temperatures not very close to the
transition temperature, the decay of the fluctuation-induced
force has the same behavior as that exhibited near the first-
order transition, as shown in Fig. 8�a�. Close to the transition
temperature, the Casimir-like force decays with thickness as
1/�3/2 for thin films.

This exponent can be also analytically supported by the
divergence of the correlation length in the vicinity of the
second-order smectic-nematic transition. In the regime of
very thin films, the asymptotic expansion leading to a 1/�
decay of the Casimir-like energy does not hold, and its main
singular behavior is due to the vanishing of the compres-
sional mode B ��f����1/�c�B1/2�. According to scaling ar-
guments, the compressional mode is proportional to the in-
verse of the correlation length and therefore �f����−1/2

�1,2�. For thin films close to a second-order transition, the
correlation length is limited by the film thickness �, resulting
in �f�����−1/2, thus supporting our extrapolated exponent
for the Casimir-like force F�����−3/2.

IV. SUMMARY AND CONCLUSIONS

In this work, using a Gaussian functional integral ap-
proach, we studied the effects of order parameter profiles on

the Casimir-like force in free-standing smectic-A films. The
profiles of order parameters were numerically calculated
from the microscopic theory �24,25� and associated with the
hydrodynamical Hamiltonian through the elastic constants of
each film layer. It was shown that the amplitude of the ther-
mal Casimir-like force has a strong dependence on the order
parameter profiles close to first- and second-order smectic-
A–nematic transition temperatures. In both cases, the ampli-
tude of the fluctuation-induced force increases for several
orders of magnitude, indicating that the thermal Casimir con-
tribution due to fluctuations of the smectic order predomi-
nates over the van der Waals force in these systems. Further,
the nonuniformity of the elastic constant profiles close to the
transition temperature modifies the functional dependence of
fluctuation-induced long-range force on the film thickness �.
In the vicinity of the second-order smectic-A–nematic phase
transition point, the force decays as 1/�3/2 in contrast to the
1/�2 decay far from the bulk transition temperature. This
feature is due to the divergence of the typical correlation
length which also governs the vanishing of the compres-
sional elastic constant. Although higher-order fluctuations
may imply in corrections to the above scaling, especially at
the vicinity of continuous transitions at which fluctuations
grow unbounded, the present results consistently show that
the thermal fluctuation-induced force is indeed the predomi-
nant long-range interaction for temperatures slightly below
the bulk SmA-N phase transition. Previous experimental
measurements, based on the relation between the surface in-
teraction and the contact angle with the film meniscus, have
indeed shown a relative increase of the surface interaction as

FIG. 7. The Casimir-like force versus film thickness for differ-
ent temperatures, near a first-order transition. The microscopic pa-
rameters are the same of Fig. 1. The surface tension is �
=30 dyn/cm and the temperatures are T=0.180V0 /kB �circles�,
0.1991V0 /kB �squares�, 0.2057V0 /kB �triangles�, and 0.2068V0 /kB

�diamonds�.

FIG. 8. The Casimir-like force versus film thickness for differ-
ent temperatures, close to the second-order transition. The micro-
scopic parameters are the same as in Fig. 3. The surface tension is
the same as in Fig. 5. The temperatures are �a� T=0.150V0 /kB

�circles�, 0.1705V0 /kB �squares� and 0.1755V0 /kB �diamonds�; �b�
T=0.1768V0 /kB �squares�, 0.1770V0 /kB �diamonds�, and
0.1771V0 /kB �circles�. The dashed line represents a decay in the
form 1/�3/2.
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the bulk smectic-A–nematic transition temperature is ap-
proached from below �38�. Once more precise experimental
techniques are nowadays available �39�, the presently pre-
dicted scaling behavior can be probed and corrections to the
Gaussian behavior estimated.
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